If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2d^2-18=0
a = 2; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·2·(-18)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*2}=\frac{-12}{4} =-3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*2}=\frac{12}{4} =3 $
| x+36.55=123.45 | | 18=x+0.02x | | 25^(3x+2)=125^(x+1) | | 50=-25+m | | 44j+j+6+9=5(9j+3) | | 18=x+0.02 | | 36.55x=123.45 | | t-21=40 | | 4x+6(-1)=22 | | -18=x+3x-10 | | s+4/3=s | | 5/8v=50 | | 6x-5+3(x-1)=5x+4 | | 1.7x-1.1=0.9x+0.5 | | 219.60=6(0.07m+27.80+0.10(27.80) | | 4x+16/9=28 | | 4+0.22x=12+0.12x | | 4×-3y=23 | | 8p+5+6=p+4p+9+8 | | 15x=6(x+6) | | 0.42=3/x | | −9=3(x−5) | | 2(x-19)=2x-12 | | 0.5s-1=1.5s | | (8y+1)+(6y+5)=90 | | (2x-30)+(12x-27)=180 | | -2(x-19)=-2x-12 | | 17x+10x+2+30=180 | | 2(x-1=10+5x | | u^2+7u-70=0 | | 11m-5=17 | | W(3x+5)x4(x-6)=40 |